Electroluminescence and energy transfer mediated by hyperbolic polaritons
Loubnan Abou-Hamdan,
Aurélien Schmitt,
Rémi Bretel,
Sylvio Rossetti,
Marin Tharrault,
David Mele,
Aurélie Pierret,
Michael Rosticher,
Takashi Taniguchi,
Kenji Watanabe,
Camille Maestre,
Catherine Journet,
Bérangère Toury,
Vincent Garnier,
Philippe Steyer,
James H. Edgar,
Eli Janzen,
Jean-Marc Berroir,
Gwendal Fève,
Gerbold Ménard,
Bernard Plaçais,
Christophe Voisin,
Jean-Paul Hugonin,
Elise Bailly,
Benjamin Vest,
Jean-Jacques Greffet,
Patrick Bouchon,
Yannick De Wilde and
Emmanuel Baudin ()
Additional contact information
Loubnan Abou-Hamdan: PSL University, CNRS
Aurélien Schmitt: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Rémi Bretel: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Sylvio Rossetti: PSL University, CNRS
Marin Tharrault: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
David Mele: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Aurélie Pierret: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Michael Rosticher: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Takashi Taniguchi: National Institute for Materials Science
Kenji Watanabe: National Institute for Materials Science
Camille Maestre: Université Claude Bernard Lyon 1, CNRS, LMI UMR 5615
Catherine Journet: Université Claude Bernard Lyon 1, CNRS, LMI UMR 5615
Bérangère Toury: Université Claude Bernard Lyon 1, CNRS, LMI UMR 5615
Vincent Garnier: INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510
Philippe Steyer: INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510
James H. Edgar: Kansas State University
Eli Janzen: Kansas State University
Jean-Marc Berroir: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Gwendal Fève: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Gerbold Ménard: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Bernard Plaçais: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Christophe Voisin: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Jean-Paul Hugonin: Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry
Elise Bailly: Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry
Benjamin Vest: Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry
Jean-Jacques Greffet: Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry
Patrick Bouchon: Université Paris-Saclay
Yannick De Wilde: PSL University, CNRS
Emmanuel Baudin: Université PSL, CNRS, Sorbonne Université, Université Paris Cité
Nature, 2025, vol. 639, issue 8056, 909-914
Abstract:
Abstract Under high electrical current, some materials can emit electromagnetic radiation beyond incandescence. This phenomenon, referred to as electroluminescence, leads to the efficient emission of visible photons and is the basis of domestic lighting devices (for example, light-emitting diodes)1,2. In principle, electroluminescence can lead to mid-infrared emission of confined light–matter excitations called phonon polaritons3,4, resulting from the coupling of photons with crystal lattice vibrations (optical phonons). In particular, phonon polaritons arising in the van der Waals crystal hexagonal boron nitride (hBN) present hyperbolic dispersion, which enhances light–matter coupling5,6. For this reason, electroluminescence of hyperbolic phonon polaritons (HPhPs) has been proposed as an explanation for the peculiar radiative energy transfer within hBN-encapsulated graphene transistors7,8. However, as HPhPs are locally confined, they are inaccessible in the far field, and as such, any hint of electroluminescence has been based on indirect electronic signatures and has yet to be confirmed by direct observation. Here we demonstrate far-field mid-infrared (wavelength approximately 6.5 μm) electroluminescence of HPhPs excited by strongly biased high-mobility graphene within a van der Waals heterostructure, and we quantify the associated radiative energy transfer through the material. The presence of HPhPs is revealed by far-field mid-infrared spectroscopy owing to their elastic scattering at discontinuities in the heterostructure. The resulting radiative flux is quantified by mid-infrared pyrometry of the substrate receiving the energy. This radiative energy transfer is also shown to be reduced in hBN with nanoscale inhomogeneities, demonstrating the central role of the electromagnetic environment in this process.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-025-08627-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:639:y:2025:i:8056:d:10.1038_s41586-025-08627-6
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-025-08627-6
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().