EconPapers    
Economics at your fingertips  
 

Vertical structure of an exoplanet’s atmospheric jet stream

Julia V. Seidel (), Bibiana Prinoth, Lorenzo Pino, Leonardo A. Santos, Hritam Chakraborty, Vivien Parmentier, Elyar Sedaghati, Joost P. Wardenier, Casper Farret Jentink, Maria Rosa Zapatero Osorio, Romain Allart, David Ehrenreich, Monika Lendl, Giulia Roccetti, Yuri Damasceno, Vincent Bourrier, Jorge Lillo-Box, H. Jens Hoeijmakers, Enric Pallé, Nuno Santos, Alejandro Suárez Mascareño, Sergio G. Sousa, Hugo M. Tabernero and Francesco A. Pepe
Additional contact information
Julia V. Seidel: European Southern Observatory
Bibiana Prinoth: European Southern Observatory
Lorenzo Pino: INAF—Osservatorio Astrofisico di Arcetri
Leonardo A. Santos: Space Telescope Science Institute
Hritam Chakraborty: Université de Genève
Vivien Parmentier: Université Côte d’Azur
Elyar Sedaghati: European Southern Observatory
Joost P. Wardenier: Université de Montréal
Casper Farret Jentink: Université de Genève
Maria Rosa Zapatero Osorio: CSIC-INTA
Romain Allart: Université de Montréal
David Ehrenreich: Université de Genève
Monika Lendl: Université de Genève
Giulia Roccetti: Garching bei München
Yuri Damasceno: European Southern Observatory
Vincent Bourrier: Université de Genève
Jorge Lillo-Box: CSIC-INTA
H. Jens Hoeijmakers: Lund University
Enric Pallé: Instituto de Astrofísica de Canarias
Nuno Santos: CAUP
Alejandro Suárez Mascareño: Instituto de Astrofísica de Canarias
Sergio G. Sousa: CAUP
Hugo M. Tabernero: Universidad Complutense de Madrid
Francesco A. Pepe: Université de Genève

Nature, 2025, vol. 639, issue 8056, 902-908

Abstract: Abstract Ultra-hot Jupiters, an extreme class of planets not found in our Solar System, provide a unique window into atmospheric processes. The extreme temperature contrasts between their day and night sides pose a fundamental climate puzzle: how is energy distributed? To address this, we must observe the three-dimensional structure of these atmospheres, particularly their vertical circulation patterns that can serve as a testbed for advanced global circulation models, for example, in ref. 1. Here we show a notable shift in atmospheric circulation in an ultra-hot Jupiter: a unilateral flow from the hot star-facing side to the cooler space-facing side of the planet sits below an equatorial super-rotational jet stream. By resolving the vertical structure of atmospheric dynamics, we move beyond integrated global snapshots of the atmosphere, enabling more accurate identification of flow patterns and allowing for a more nuanced comparison to models. Global circulation models based on first principles struggle to replicate the observed circulation pattern2 underscoring a critical gap between theoretical understanding of atmospheric flows and observational evidence. This work serves as a testbed to develop more comprehensive models applicable beyond our Solar System as we prepare for the next generation of giant telescopes.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-025-08664-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:639:y:2025:i:8056:d:10.1038_s41586-025-08664-1

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-025-08664-1

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-02
Handle: RePEc:nat:nature:v:639:y:2025:i:8056:d:10.1038_s41586-025-08664-1