Global modules robustly emerge from local interactions and smooth gradients
Mikail Khona,
Sarthak Chandra () and
Ila Fiete ()
Additional contact information
Mikail Khona: MIT
Sarthak Chandra: MIT
Ila Fiete: MIT
Nature, 2025, vol. 640, issue 8057, 155-164
Abstract:
Abstract Modular structure and function are ubiquitous in biology, from the organization of animal brains and bodies to the scale of ecosystems. However, the mechanisms of modularity emergence from non-modular precursors remain unclear. Here we introduce the principle of peak selection, a process by which purely local interactions and smooth gradients can drive the self-organization of discrete global modules. The process combines strengths of the positional and Turing pattern-formation mechanisms into a model for morphogenesis. Applied to the grid-cell system of the brain, peak selection results in the self-organization of functionally distinct modules with discretely spaced spatial periods. Applied to ecological systems, it results in discrete multispecies niches and synchronous spawning across geographically distributed coral colonies. The process exhibits self-scaling with system size and ‘topological robustness’1, which renders module emergence and module properties insensitive to most parameters. Peak selection ameliorates the fine-tuning requirement for continuous attractor dynamics in single grid-cell modules and it makes a detail-independent prediction that grid module period ratios should approximate adjacent integer ratios, providing a highly accurate match to the available data. Predictions for grid cells at the transcriptional, connectomic and physiological levels promise to elucidate the interplay of molecules, connectivity and function emergence in brains.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-024-08541-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:640:y:2025:i:8057:d:10.1038_s41586-024-08541-3
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-024-08541-3
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().