Active energy compression of a laser-plasma electron beam
P. Winkler (),
M. Trunk,
L. Hübner,
A. Martinez de la Ossa,
S. Jalas,
M. Kirchen,
I. Agapov,
S. A. Antipov,
R. Brinkmann,
T. Eichner,
A. Ferran Pousa,
T. Hülsenbusch,
G. Palmer,
M. Schnepp,
K. Schubert,
M. Thévenet,
P. A. Walker,
C. Werle,
W. P. Leemans and
A. R. Maier ()
Additional contact information
P. Winkler: Deutsches Elektronen-Synchrotron DESY
M. Trunk: Deutsches Elektronen-Synchrotron DESY
L. Hübner: Deutsches Elektronen-Synchrotron DESY
A. Martinez de la Ossa: Deutsches Elektronen-Synchrotron DESY
S. Jalas: Deutsches Elektronen-Synchrotron DESY
M. Kirchen: Deutsches Elektronen-Synchrotron DESY
I. Agapov: Deutsches Elektronen-Synchrotron DESY
S. A. Antipov: Deutsches Elektronen-Synchrotron DESY
R. Brinkmann: Deutsches Elektronen-Synchrotron DESY
T. Eichner: Deutsches Elektronen-Synchrotron DESY
A. Ferran Pousa: Deutsches Elektronen-Synchrotron DESY
T. Hülsenbusch: Deutsches Elektronen-Synchrotron DESY
G. Palmer: Deutsches Elektronen-Synchrotron DESY
M. Schnepp: University of Hamburg
K. Schubert: Deutsches Elektronen-Synchrotron DESY
M. Thévenet: Deutsches Elektronen-Synchrotron DESY
P. A. Walker: Deutsches Elektronen-Synchrotron DESY
C. Werle: Deutsches Elektronen-Synchrotron DESY
W. P. Leemans: Deutsches Elektronen-Synchrotron DESY
A. R. Maier: Deutsches Elektronen-Synchrotron DESY
Nature, 2025, vol. 640, issue 8060, 907-910
Abstract:
Abstract Radio-frequency (RF) accelerators providing high-quality relativistic electron beams are an important resource enabling many areas of science, as well as industrial and medical applications. Two decades ago, laser-plasma accelerators1 that support orders of magnitude higher electric fields than those provided by modern RF cavities produced quasi-monoenergetic electron beams for the first time2–4. Since then, high-brightness electron beams at gigaelectronvolt (GeV) beam energy and competitive beam properties have been demonstrated from only centimetre-long plasmas5–9, a substantial advantage over the hundreds of metres required by RF-cavity-based accelerators. However, despite the considerable progress, the comparably large energy spread and the fluctuation (jitter) in beam energy still effectively prevent laser-plasma accelerators from driving real-world applications. Here we report the generation of a laser-plasma electron beam using active energy compression, resulting in a performance so far only associated with modern RF-based accelerators. Using a magnetic chicane, the electron bunch is first stretched longitudinally to imprint an energy correlation, which is then removed with an active RF cavity. The resulting energy spread and energy jitter are reduced by more than an order of magnitude to below the permille level, meeting the acceptance criteria of a modern synchrotron, thereby opening the path to a compact storage ring injector and other applications.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-025-08772-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:640:y:2025:i:8060:d:10.1038_s41586-025-08772-y
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-025-08772-y
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().