Proton transport from the antimatter factory of CERN
M. Leonhardt,
D. Schweitzer,
F. Abbass,
K. K. Anjum,
B. Arndt,
S. Erlewein,
S. Endoh,
P. Geissler,
T. Imamura,
J. I. Jäger,
B. M. Latacz,
P. Micke,
F. Voelksen,
H. Yildiz,
K. Blaum,
J. A. Devlin,
Y. Matsuda,
C. Ospelkaus,
W. Quint,
A. Soter,
J. Walz,
Y. Yamazaki,
S. Ulmer () and
C. Smorra ()
Additional contact information
M. Leonhardt: Heinrich Heine Universität Düsseldorf
D. Schweitzer: Heinrich Heine Universität Düsseldorf
F. Abbass: Heinrich Heine Universität Düsseldorf
K. K. Anjum: GSI-Helmholtzzentrum für Schwerionenforschung
B. Arndt: GSI-Helmholtzzentrum für Schwerionenforschung
S. Erlewein: Heinrich Heine Universität Düsseldorf
S. Endoh: RIKEN
P. Geissler: RIKEN
T. Imamura: Leibniz Universität
J. I. Jäger: Max-Planck-Institut für Kernphysik
B. M. Latacz: CERN
P. Micke: Max-Planck-Institut für Kernphysik
F. Voelksen: Heinrich Heine Universität Düsseldorf
H. Yildiz: Johannes Gutenberg-Universität
K. Blaum: Max-Planck-Institut für Kernphysik
J. A. Devlin: Imperial College London
Y. Matsuda: University of Tokyo
C. Ospelkaus: Leibniz Universität
W. Quint: GSI-Helmholtzzentrum für Schwerionenforschung
A. Soter: ETH Zürich
J. Walz: Johannes Gutenberg-Universität
Y. Yamazaki: RIKEN
S. Ulmer: Heinrich Heine Universität Düsseldorf
C. Smorra: Heinrich Heine Universität Düsseldorf
Nature, 2025, vol. 641, issue 8064, 871-875
Abstract:
Abstract Precision measurements using low-energy antiprotons, exclusively available at the antimatter factory (AMF) of CERN1, offer stringent tests of charge–parity–time (CPT) invariance, which is a fundamental symmetry in the Standard Model of particle physics2. These tests have been realized, for example, in antiprotonic helium3 and antihydrogen4. In our cryogenic Penning-trap experiments5, we measure the magnetic moments6,7 and charge-to-mass ratios of protons and antiprotons and now provide the most precise test of CPT invariance in the baryon sector8. Our experiments are limited by magnetic field fluctuations imposed by the decelerators in the AMF; therefore, we are advancing the relocation of antiprotons to dedicated precision laboratories. Here we present the successful transport of a trapped proton cloud from the AMF using BASE-STEP9—a transportable, superconducting, autonomous and open Penning-trap system that can distribute antiprotons into other experiments. We transferred the trapped protons from our experimental area at the AMF onto a truck and transported them across the Meyrin site of CERN, demonstrating autonomous operation without external power for 4 h and loss-free proton relocation. We thereby confirm the feasibility of transferring particles into low-noise laboratories in the vicinity of the AMF and of using a power generator on the truck10 to reach laboratories throughout Europe. This marks the potential start of a new era in precision antimatter research, enabling low-noise measurements of antiprotons, the charged antimatter ions $${\bar{{\rm{H}}}}^{+}$$ H ¯ + 11 and $${\bar{{\rm{H}}}}_{2}^{-}$$ H ¯ 2 − (ref. 12), and other accelerator-produced ions, such as hydrogen-like lead or uranium ions13,14.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-025-08926-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:641:y:2025:i:8064:d:10.1038_s41586-025-08926-y
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-025-08926-y
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().