Calving-driven fjord dynamics resolved by seafloor fibre sensing
Dominik Gräff (),
Bradley Paul Lipovsky,
Andreas Vieli,
Armin Dachauer,
Rebecca Jackson,
Daniel Farinotti,
Julia Schmale,
Jean-Paul Ampuero,
Eric Berg,
Anke Dannowski,
Andrea Kneib-Walter,
Manuela Köpfli,
Heidrun Kopp,
Enrico Loo,
Daniel Mata Flores,
Diego Mercerat,
Raphael Moser,
Anthony Sladen,
Fabian Walter,
Diego Wasser,
Ethan Welty,
Selina Wetter and
Ethan F. Williams
Additional contact information
Dominik Gräff: University of Washington
Bradley Paul Lipovsky: University of Washington
Andreas Vieli: University of Zurich
Armin Dachauer: University of Zurich
Rebecca Jackson: Tufts University
Daniel Farinotti: ETH Zurich
Julia Schmale: École Polytechnique Fédérale de Lausanne
Jean-Paul Ampuero: Université Côte d’Azur, Observatoire de la Côte d’Azur, IRD, CNRS
Eric Berg: Stanford University
Anke Dannowski: GEOMAR Helmholtz Centre for Ocean Research Kiel
Andrea Kneib-Walter: University of Zurich
Manuela Köpfli: University of Washington
Heidrun Kopp: GEOMAR Helmholtz Centre for Ocean Research Kiel
Enrico Loo: ETH Zurich
Daniel Mata Flores: Université Côte d’Azur, Observatoire de la Côte d’Azur, IRD, CNRS
Diego Mercerat: Université Côte d’Azur, Observatoire de la Côte d’Azur, IRD, CNRS
Raphael Moser: ETH Zurich
Anthony Sladen: Université Côte d’Azur, Observatoire de la Côte d’Azur, IRD, CNRS
Fabian Walter: ETH Zurich
Diego Wasser: University of Zurich
Ethan Welty: University of Zurich
Selina Wetter: Université Paris Cité
Ethan F. Williams: University of Washington
Nature, 2025, vol. 644, issue 8076, 404-412
Abstract:
Abstract Interactions between melting ice and a warming ocean drive the present-day retreat of tidewater glaciers of Greenland1–3, with consequences for both sea level rise4 and the global climate system5. Controlling glacier frontal ablation, these ice–ocean interactions involve chains of small-scale processes that link glacier calving—the detachment of icebergs6—and submarine melt to the broader fjord dynamics7,8. However, understanding these processes remains limited, in large part due to the challenge of making targeted observations in hazardous environments near calving fronts with sufficient temporal and spatial resolution9. Here we show that iceberg calving can act as a submarine melt amplifier through excitation of transient internal waves. Our observations are based on front-proximal submarine fibre sensing of the iceberg calving process chain. In this chain, calving initiates with persistent ice fracturing that coalesces into iceberg detachment, which in turn excites local tsunamis, internal gravity waves and transient currents at the ice front before the icebergs eventually decay into fragments. Our observations show previously unknown pathways in which tidewater glaciers interact with a warming ocean and help close the ice front ablation budget, which current models struggle to do10. These insights provide new process-scale understanding pertinent to retreating tidewater glaciers around the globe.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-025-09347-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:644:y:2025:i:8076:d:10.1038_s41586-025-09347-7
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-025-09347-7
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().