Realization of a doped quantum antiferromagnet in a Rydberg tweezer array
Mu Qiao (),
Gabriel Emperauger,
Cheng Chen,
Lukas Homeier,
Simon Hollerith,
Guillaume Bornet,
Romain Martin,
Bastien Gély,
Lukas Klein,
Daniel Barredo,
Sebastian Geier,
Neng-Chun Chiu,
Fabian Grusdt,
Annabelle Bohrdt,
Thierry Lahaye and
Antoine Browaeys ()
Additional contact information
Mu Qiao: Laboratoire Charles Fabry
Gabriel Emperauger: Laboratoire Charles Fabry
Cheng Chen: Laboratoire Charles Fabry
Lukas Homeier: University of Colorado
Simon Hollerith: Harvard University
Guillaume Bornet: Laboratoire Charles Fabry
Romain Martin: Laboratoire Charles Fabry
Bastien Gély: Laboratoire Charles Fabry
Lukas Klein: Laboratoire Charles Fabry
Daniel Barredo: Laboratoire Charles Fabry
Sebastian Geier: Universität Heidelberg
Neng-Chun Chiu: Harvard University
Fabian Grusdt: Ludwig-Maximilians-Universität München
Annabelle Bohrdt: Munich Center for Quantum Science and Technology (MCQST)
Thierry Lahaye: Laboratoire Charles Fabry
Antoine Browaeys: Laboratoire Charles Fabry
Nature, 2025, vol. 644, issue 8078, 889-895
Abstract:
Abstract Doping an antiferromagnetic (AFM) Mott insulator is central to our understanding of a variety of phenomena in strongly correlated electrons, including high-temperature superconductors1,2. To describe the competition between tunnelling t of hole dopants and AFM spin interactions J, theoretical and numerical studies often focus on the paradigmatic t–J model3 and the direct analogue quantum simulation of this model in the relevant regime of high-particle density has long been sought4,5. Here we realize a doped quantum antiferromagnet with next-nearest-neighbour (NNN) tunnellings t′ (refs. 6–10) and hard-core bosonic holes11 using a Rydberg tweezer platform. We use coherent dynamics between three Rydberg levels, encoding spins and holes12, to implement a tunable bosonic t–J–V model allowing us to study previously inaccessible parameter regimes. We observe dynamical phase separation between hole and spin domains for |t/J| ≪ 1 and demonstrate the formation of repulsively bound hole pairs in a variety of spin backgrounds. The interference between NNN tunnellings t′ and perturbative pair tunnelling gives rise to light and heavy pairs depending on the sign of t. Using the single-site control allows us to study the dynamics of a single hole in 2D square lattice (anti)ferromagnets. The model we implement extends the toolbox of Rydberg tweezer experiments beyond spin-1/2 models13 to a larger class of t–J and spin-1 models14,15.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-025-09377-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:644:y:2025:i:8078:d:10.1038_s41586-025-09377-1
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-025-09377-1
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().