EconPapers    
Economics at your fingertips  
 

Redox-driven mineral and organic associations in Jezero Crater, Mars

Joel A. Hurowitz (), M. M. Tice, A. C. Allwood, M. L. Cable, K. P. Hand, A. E. Murphy, K. Uckert, J. F. Bell, T. Bosak, A. P. Broz, E. Clavé, A. Cousin, S. Davidoff, E. Dehouck, K. A. Farley, S. Gupta, S.-E. Hamran, K. Hickman-Lewis, J. R. Johnson, A. J. Jones, M. W. M. Jones, P. S. Jørgensen, L. C. Kah, H. Kalucha, T. V. Kizovski, D. A. Klevang, Y. Liu, F. M. McCubbin, E. L. Moreland, G. Paar, D. A. Paige, A. C. Pascuzzo, M. S. Rice, M. E. Schmidt, K. L. Siebach, S. Siljeström, J. I. Simon, K. M. Stack, A. Steele, N. J. Tosca, A. H. Treiman, S. J. VanBommel, L. A. Wade, B. P. Weiss, R. C. Wiens, K. H. Williford, R. Barnes, P. A. Barr, A. Bechtold, P. Beck, K. Benzerara, S. Bernard, O. Beyssac, R. Bhartia, A. J. Brown, G. Caravaca, E. L. Cardarelli, E. A. Cloutis, A. G. Fairén, D. T. Flannery, T. Fornaro, T. Fouchet, B. Garczynski, F. Goméz, E. M. Hausrath, C. M. Heirwegh, C. D. K. Herd, J. E. Huggett, J. L. Jørgensen, S. W. Lee, A. Y. Li, J. N. Maki, L. Mandon, N. Mangold, J. A. Manrique, J. Martínez-Frías, J. I. Núñez, L. P. O’Neil, B. J. Orenstein, N. Phelan, C. Quantin-Nataf, P. Russell, M. D. Schulte, E. Scheller, S. Sharma, D. L. Shuster, A. Srivastava, B. V. Wogsland and Z. U. Wolf
Additional contact information
Joel A. Hurowitz: Stony Brook University
M. M. Tice: Texas A&M University
A. C. Allwood: California Institute of Technology
M. L. Cable: California Institute of Technology
K. P. Hand: California Institute of Technology
A. E. Murphy: Planetary Science Institute
K. Uckert: California Institute of Technology
J. F. Bell: Arizona State University
T. Bosak: Massachusetts Institute of Technology
A. P. Broz: Purdue University
E. Clavé: Institute of Optical Sensor Systems
A. Cousin: CNES
S. Davidoff: California Institute of Technology
E. Dehouck: CNRS, UJM, LGL-TPE, UMR 5276
K. A. Farley: California Institute of Technology
S. Gupta: Imperial College London
S.-E. Hamran: University of Oslo
K. Hickman-Lewis: University of London
J. R. Johnson: Johns Hopkins University Applied Physics Laboratory
A. J. Jones: Imperial College London
M. W. M. Jones: Queensland University of Technology
P. S. Jørgensen: DTU Space
L. C. Kah: University of Tennessee
H. Kalucha: California Institute of Technology
T. V. Kizovski: Brock University
D. A. Klevang: DTU Space
Y. Liu: California Institute of Technology
F. M. McCubbin: NASA Johnson Space Center
E. L. Moreland: Rice University
G. Paar: Joanneum Research Institute for Digital Technologies
D. A. Paige: University of California Los Angeles
A. C. Pascuzzo: Malin Space Science Systems
M. S. Rice: Western Washington University
M. E. Schmidt: Brock University
K. L. Siebach: Rice University
S. Siljeström: RISE Research Institutes of Sweden
J. I. Simon: NASA Johnson Space Center
K. M. Stack: California Institute of Technology
A. Steele: Carnegie Science Earth and Planets Laboratory
N. J. Tosca: University of Cambridge
A. H. Treiman: Lunar and Planetary Institute
S. J. VanBommel: Washington University in St. Louis
L. A. Wade: California Institute of Technology
B. P. Weiss: Massachusetts Institute of Technology
R. C. Wiens: Purdue University
K. H. Williford: Blue Marble Space Institute of Science
R. Barnes: Imperial College London
P. A. Barr: Malin Space Science Systems
A. Bechtold: University of Vienna
P. Beck: Institut d’astrophysique et de planétologie de Grenoble/ISTerre
K. Benzerara: IRD Biomineralogy Team Jussieu Campus
S. Bernard: IMPMC
O. Beyssac: Muséum National d’Histoire Naturelle
R. Bhartia: Photon Systems Inc.
A. J. Brown: Plancius Research
G. Caravaca: CNES
E. L. Cardarelli: University of California Los Angeles
E. A. Cloutis: University of Winnipeg
A. G. Fairén: CSIC-INTA
D. T. Flannery: Queensland University of Technology
T. Fornaro: INAF-Astrophysical Observatory of Arcetri
T. Fouchet: PSL
B. Garczynski: Western Washington University
F. Goméz: CSIC-INTA
E. M. Hausrath: UNLV
C. M. Heirwegh: California Institute of Technology
C. D. K. Herd: University of Alberta
J. E. Huggett: Malin Space Science Systems
J. L. Jørgensen: DTU Space
S. W. Lee: California Institute of Technology
A. Y. Li: University of Washington
J. N. Maki: California Institute of Technology
L. Mandon: California Institute of Technology
N. Mangold: Univ. Angers
J. A. Manrique: University of Valladolid
J. Martínez-Frías: CSIC-UCM
J. I. Núñez: Johns Hopkins University Applied Physics Laboratory
L. P. O’Neil: Texas A&M University
B. J. Orenstein: Queensland University of Technology
N. Phelan: Malin Space Science Systems
C. Quantin-Nataf: CNRS, UJM, LGL-TPE, UMR 5276
P. Russell: University of California Los Angeles
M. D. Schulte: NASA Headquarters
E. Scheller: Massachusetts Institute of Technology
S. Sharma: Carnegie Science Earth and Planets Laboratory
D. L. Shuster: University of California Berkeley
A. Srivastava: Carnegie Science Earth and Planets Laboratory
B. V. Wogsland: University of Tennessee
Z. U. Wolf: Los Alamos National Laboratory

Nature, 2025, vol. 645, issue 8080, 332-340

Abstract: Abstract The Perseverance rover has explored and sampled igneous and sedimentary rocks within Jezero Crater to characterize early Martian geological processes and habitability and search for potential biosignatures1–7. Upon entering Neretva Vallis, on Jezero Crater’s western edge8, Perseverance investigated distinctive mudstone and conglomerate outcrops of the Bright Angel formation. Here we report a detailed geological, petrographic and geochemical survey of these rocks and show that organic-carbon-bearing mudstones in the Bright Angel formation contain submillimetre-scale nodules and millimetre-scale reaction fronts enriched in ferrous iron phosphate and sulfide minerals, likely vivianite and greigite, respectively. This organic carbon appears to have participated in post-depositional redox reactions that produced the observed iron-phosphate and iron-sulfide minerals. Geological context and petrography indicate that these reactions occurred at low temperatures. Within this context, we review the various pathways by which redox reactions that involve organic matter can produce the observed suite of iron-, sulfur- and phosphorus-bearing minerals in laboratory and natural environments on Earth. Ultimately, we conclude that analysis of the core sample collected from this unit using high-sensitivity instrumentation on Earth will enable the measurements required to determine the origin of the minerals, organics and textures it contains.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-025-09413-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:645:y:2025:i:8080:d:10.1038_s41586-025-09413-0

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-025-09413-0

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-09-24
Handle: RePEc:nat:nature:v:645:y:2025:i:8080:d:10.1038_s41586-025-09413-0