EconPapers    
Economics at your fingertips  
 

Experimental demonstration of logical magic state distillation

Pedro Sales Rodriguez, John M. Robinson, Paul Niklas Jepsen, Zhiyang He, Casey Duckering, Chen Zhao, Kai-Hsin Wu, Joseph Campo, Kevin Bagnall, Minho Kwon, Thomas Karolyshyn, Phillip Weinberg, Madelyn Cain, Simon J. Evered, Alexandra A. Geim, Marcin Kalinowski, Sophie H. Li, Tom Manovitz, Jesse Amato-Grill, James I. Basham, Liane Bernstein, Boris Braverman, Alexei Bylinskii, Adam Choukri, Robert J. DeAngelo, Fang Fang, Connor Fieweger, Paige Frederick, David Haines, Majd Hamdan, Julian Hammett, Ning Hsu, Ming-Guang Hu, Florian Huber, Ningyuan Jia, Dhruv Kedar, Milan Kornjača, Fangli Liu, John Long, Jonathan Lopatin, Pedro L. S. Lopes, Xiu-Zhe Luo, Tommaso Macrì, Ognjen Marković, Luis A. Martínez-Martínez, Xianmei Meng, Stefan Ostermann, Evgeny Ostroumov, David Paquette, Zexuan Qiang, Vadim Shofman, Anshuman Singh, Manuj Singh, Nandan Sinha, Henry Thoreen, Noel Wan, Yiping Wang, Daniel Waxman-Lenz, Tak Wong, Jonathan Wurtz, Andrii Zhdanov, Laurent Zheng, Markus Greiner, Alexander Keesling, Nathan Gemelke, Vladan Vuletić, Takuya Kitagawa, Sheng-Tao Wang, Dolev Bluvstein, Mikhail D. Lukin, Alexander Lukin, Hengyun Zhou () and Sergio H. Cantú ()
Additional contact information
Pedro Sales Rodriguez: QuEra Computing
John M. Robinson: QuEra Computing
Paul Niklas Jepsen: QuEra Computing
Zhiyang He: QuEra Computing
Casey Duckering: QuEra Computing
Chen Zhao: QuEra Computing
Kai-Hsin Wu: QuEra Computing
Joseph Campo: QuEra Computing
Kevin Bagnall: QuEra Computing
Minho Kwon: QuEra Computing
Thomas Karolyshyn: QuEra Computing
Phillip Weinberg: QuEra Computing
Madelyn Cain: Harvard University
Simon J. Evered: Harvard University
Alexandra A. Geim: Harvard University
Marcin Kalinowski: Harvard University
Sophie H. Li: Harvard University
Tom Manovitz: Harvard University
Jesse Amato-Grill: QuEra Computing
James I. Basham: QuEra Computing
Liane Bernstein: QuEra Computing
Boris Braverman: QuEra Computing
Alexei Bylinskii: QuEra Computing
Adam Choukri: QuEra Computing
Robert J. DeAngelo: QuEra Computing
Fang Fang: QuEra Computing
Connor Fieweger: QuEra Computing
Paige Frederick: QuEra Computing
David Haines: QuEra Computing
Majd Hamdan: QuEra Computing
Julian Hammett: QuEra Computing
Ning Hsu: QuEra Computing
Ming-Guang Hu: QuEra Computing
Florian Huber: QuEra Computing
Ningyuan Jia: QuEra Computing
Dhruv Kedar: QuEra Computing
Milan Kornjača: QuEra Computing
Fangli Liu: QuEra Computing
John Long: QuEra Computing
Jonathan Lopatin: QuEra Computing
Pedro L. S. Lopes: QuEra Computing
Xiu-Zhe Luo: QuEra Computing
Tommaso Macrì: QuEra Computing
Ognjen Marković: QuEra Computing
Luis A. Martínez-Martínez: QuEra Computing
Xianmei Meng: QuEra Computing
Stefan Ostermann: QuEra Computing
Evgeny Ostroumov: QuEra Computing
David Paquette: QuEra Computing
Zexuan Qiang: QuEra Computing
Vadim Shofman: QuEra Computing
Anshuman Singh: QuEra Computing
Manuj Singh: QuEra Computing
Nandan Sinha: QuEra Computing
Henry Thoreen: QuEra Computing
Noel Wan: QuEra Computing
Yiping Wang: QuEra Computing
Daniel Waxman-Lenz: QuEra Computing
Tak Wong: QuEra Computing
Jonathan Wurtz: QuEra Computing
Andrii Zhdanov: QuEra Computing
Laurent Zheng: QuEra Computing
Markus Greiner: Harvard University
Alexander Keesling: QuEra Computing
Nathan Gemelke: QuEra Computing
Vladan Vuletić: Massachusetts Institute of Technology
Takuya Kitagawa: QuEra Computing
Sheng-Tao Wang: QuEra Computing
Dolev Bluvstein: Harvard University
Mikhail D. Lukin: Harvard University
Alexander Lukin: QuEra Computing
Hengyun Zhou: QuEra Computing
Sergio H. Cantú: QuEra Computing

Nature, 2025, vol. 645, issue 8081, 620-625

Abstract: Abstract Realizing universal fault-tolerant quantum computation is a key goal in quantum information science1–4. By encoding quantum information into logical qubits using quantum error correcting codes, physical errors can be detected and corrected, enabling a substantial reduction in logical error rates5–11. However, the set of logical operations that can be easily implemented on these encoded qubits is often constrained1,12, necessitating the use of special resource states known as ‘magic states’13 to implement universal, classically hard circuits14. A key method to prepare high-fidelity magic states is to perform ‘distillation’, creating them from multiple lower-fidelity inputs13,15. Here we present the experimental realization of magic state distillation with logical qubits on a neutral-atom quantum computer. Our approach uses a dynamically reconfigurable architecture8,16 to encode and perform quantum operations on many logical qubits in parallel. We demonstrate the distillation of magic states encoded in d = 3 and d = 5 colour codes, observing improvements in the logical fidelity of the output magic states compared with the input logical magic states. These experiments demonstrate a key building block of universal fault-tolerant quantum computation and represent an important step towards large-scale logical quantum processors.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41586-025-09367-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09367-3

Ordering information: This journal article can be ordered from
https://www.nature.com/

DOI: 10.1038/s41586-025-09367-3

Access Statistics for this article

Nature is currently edited by Magdalena Skipper

More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-09-19
Handle: RePEc:nat:nature:v:645:y:2025:i:8081:d:10.1038_s41586-025-09367-3