Late fluid flow in a primitive asteroid revealed by Lu–Hf isotopes in Ryugu
Tsuyoshi Iizuka (),
Takazo Shibuya,
Takehito Hayakawa,
Tetsuya Yokoyama,
Ikshu Gautam,
Makiko K. Haba,
Kengo T. M. Ito,
Yuki Hibiya,
Akira Yamaguchi,
Yoshinari Abe,
Jérôme Aléon,
Conel M. O’D. Alexander,
Sachiko Amari,
Yuri Amelin,
Ken-ichi Bajo,
Martin Bizzarro,
Audrey Bouvier,
Richard W. Carlson,
Marc Chaussidon,
Byeon-Gak Choi,
Nicolas Dauphas,
Andrew M. Davis,
Tommaso Rocco,
Wataru Fujiya,
Ryota Fukai,
Hiroshi Hidaka,
Hisashi Homma,
Gary R. Huss,
Trevor R. Ireland,
Akira Ishikawa,
Shoichi Itoh,
Noriyuki Kawasaki,
Noriko T. Kita,
Koki Kitajima,
Thorsten Kleine,
Shintaro Komatani,
Alexander N. Krot,
Ming-Chang Liu,
Yuki Masuda,
Kazuko Motomura,
Frédéric Moynier,
Kazuhide Nagashima,
Izumi Nakai,
Ann Nguyen,
Larry Nittler,
Andreas Pack,
Changkun Park,
Laurette Piani,
Liping Qin,
Sara Russell,
Naoya Sakamoto,
Maria Schönbächler,
Lauren Tafla,
Haolan Tang,
Kentaro Terada,
Yasuko Terada,
Tomohiro Usui,
Sohei Wada,
Meenakshi Wadhwa,
Richard J. Walker,
Katsuyuki Yamashita,
Qing-Zhu Yin,
Shigekazu Yoneda,
Hiroharu Yui,
Ai-Cheng Zhang,
Tomoki Nakamura,
Hiroshi Naraoka,
Takaaki Noguchi,
Ryuji Okazaki,
Kanako Sakamoto,
Hikaru Yabuta,
Masanao Abe,
Akiko Miyazaki,
Aiko Nakato,
Masahiro Nishimura,
Tatsuaki Okada,
Toru Yada,
Kasumi Yogata,
Satoru Nakazawa,
Takanao Saiki,
Satoshi Tanaka,
Fuyuto Terui,
Yuichi Tsuda,
Sei-ichiro Watanabe,
Makoto Yoshikawa,
Shogo Tachibana and
Hisayoshi Yurimoto
Additional contact information
Tsuyoshi Iizuka: The University of Tokyo
Takazo Shibuya: Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
Takehito Hayakawa: National Institutes for Quantum Science and Technology
Tetsuya Yokoyama: Institute of Science Tokyo
Ikshu Gautam: Institute of Science Tokyo
Makiko K. Haba: Institute of Science Tokyo
Kengo T. M. Ito: The University of Tokyo
Yuki Hibiya: The University of Tokyo
Akira Yamaguchi: National Institute of Polar Research
Yoshinari Abe: Tokyo Denki University
Jérôme Aléon: Museum National d’Histoire Naturelle, CNRS UMR 7590, IRD
Conel M. O’D. Alexander: Carnegie Institution for Science
Sachiko Amari: The University of Tokyo
Yuri Amelin: Korea Basic Science Institute
Ken-ichi Bajo: Hokkaido University
Martin Bizzarro: University of Copenhagen
Audrey Bouvier: Universität Bayreuth
Richard W. Carlson: Carnegie Institution for Science
Marc Chaussidon: CNRS
Byeon-Gak Choi: Seoul National University
Nicolas Dauphas: The University of Chicago
Andrew M. Davis: The University of Chicago
Tommaso Rocco: University of Göttingen
Wataru Fujiya: Ibaraki University
Ryota Fukai: JAXA
Hiroshi Hidaka: Nagoya University
Hisashi Homma: Rigaku Corporation
Gary R. Huss: University of Hawai’i at Mānoa
Trevor R. Ireland: The University of Queensland
Akira Ishikawa: Institute of Science Tokyo
Shoichi Itoh: Kyoto University
Noriyuki Kawasaki: Hokkaido University
Noriko T. Kita: University of Wisconsin-Madison
Koki Kitajima: University of Wisconsin-Madison
Thorsten Kleine: Max Planck Institute for Solar System Research
Shintaro Komatani: Horiba Techno Service Co. Ltd
Alexander N. Krot: University of Hawai’i at Mānoa
Ming-Chang Liu: UCLA
Yuki Masuda: Institute of Science Tokyo
Kazuko Motomura: Rigaku Corporation
Frédéric Moynier: CNRS
Kazuhide Nagashima: University of Hawai’i at Mānoa
Izumi Nakai: Tokyo University of Science
Ann Nguyen: NASA Johnson Space Center
Larry Nittler: Carnegie Institution for Science
Andreas Pack: University of Göttingen
Changkun Park: Korea Polar Research Institute
Laurette Piani: CNRS - Université de Lorraine
Liping Qin: School of Earth and Space Sciences, University of Science and Technology of China
Sara Russell: Natural History Museum
Naoya Sakamoto: Hokkaido University
Maria Schönbächler: ETH Zurich
Lauren Tafla: UCLA
Haolan Tang: School of Earth and Space Sciences, University of Science and Technology of China
Kentaro Terada: Osaka University
Yasuko Terada: Japan Synchrotron Radiation Research Institute
Tomohiro Usui: JAXA
Sohei Wada: Hokkaido University
Meenakshi Wadhwa: Arizona State University
Richard J. Walker: University of Maryland
Katsuyuki Yamashita: Okayama University
Qing-Zhu Yin: University of California, Davis
Shigekazu Yoneda: National Museum of Nature and Science
Hiroharu Yui: Tokyo University of Science
Ai-Cheng Zhang: Nanjing University
Tomoki Nakamura: Tohoku University
Hiroshi Naraoka: Kyushu University
Takaaki Noguchi: Kyoto University
Ryuji Okazaki: Kyushu University
Kanako Sakamoto: JAXA
Hikaru Yabuta: Hiroshima University
Masanao Abe: JAXA
Akiko Miyazaki: JAXA
Aiko Nakato: National Institute of Polar Research
Masahiro Nishimura: JAXA
Tatsuaki Okada: JAXA
Toru Yada: JAXA
Kasumi Yogata: JAXA
Satoru Nakazawa: JAXA
Takanao Saiki: JAXA
Satoshi Tanaka: JAXA
Fuyuto Terui: Kanagawa Institute of Technology
Yuichi Tsuda: JAXA
Sei-ichiro Watanabe: Nagoya University
Makoto Yoshikawa: JAXA
Shogo Tachibana: JAXA
Hisayoshi Yurimoto: Hokkaido University
Nature, 2025, vol. 646, issue 8083, 62-67
Abstract:
Abstract Carbonaceous asteroids are the source of the most primitive meteorites1 and represent leftover planetesimals that formed from ice and dust in the outer Solar System and may have delivered volatiles to the terrestrial planets2–5. Understanding the aqueous activity of asteroids is key to deciphering their thermal, chemical and orbital evolution, with implications for the origin of water on the terrestrial planets. Analyses of the objects, in particular pristine samples returned from asteroid Ryugu, have provided detailed information on fluid–rock interactions within a few million years after parent-body formation6–11. However, the long-term fate of asteroidal water remains poorly understood. Here we present evidence for fluid flow in a carbonaceous asteroid more than 1 billion years after formation, based on the 176Lu–176Hf decay systematics of Ryugu samples, which reflect late lutetium mobilization. Such late fluid flow was probably triggered by an impact that generated heat for ice melting and opened rock fractures for fluid migration. This contrasts the early aqueous activity powered by short-lived radioactive decay, with limited fluid flow and little elemental fractionation12. Our results imply that carbonaceous planetesimals accreted by the terrestrial planets could have retained not only hydrous minerals but also aqueous water, leading to an upwards revision of the inventory of their water delivery by a factor of two to three.
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41586-025-09483-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:646:y:2025:i:8083:d:10.1038_s41586-025-09483-0
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/s41586-025-09483-0
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().