An Analysis of the Impact of Research and Development on Productivity Using Bayesian Model Averaging with a Reversible Jump Algorithm
Kelvin Balcombe and
George Rapsomanikis
American Journal of Agricultural Economics, 2010, vol. 92, issue 4, 985-998
Abstract:
A Bayesian model averaging approach to the estimation of lag structures is introduced and applied to assess the impact of (R&D) on agricultural productivity in the United States from 1889 to 1990. Lag and structural break coefficients are estimated using a reversible jump algorithm that traverses the model space. In addition to producing estimates and standard deviations for the coefficients, the probability that a given lag (or break) enters the model is estimated. The approach is extended to select models populated with gamma distributed lags of different frequencies. Results are consistent with the hypothesis that R&D positively drives productivity. Gamma lags are found to retain their usefulness in imposing a plausible structure on lag coefficients, and their role is enhanced through the use of model averaging. Copyright 2010, Oxford University Press.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1093/ajae/aaq050 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:ajagec:v:92:y:2010:i:4:p:985-998
Access Statistics for this article
American Journal of Agricultural Economics is currently edited by Madhu Khanna, Brian E. Roe, James Vercammen and JunJie Wu
More articles in American Journal of Agricultural Economics from Agricultural and Applied Economics Association Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().