Economics at your fingertips  

Bayesian Estimation of Possibly Similar Yield Densities: Implications for Rating Crop Insurance Contracts

Alan Ker (), Tor Tolhurst () and Yong Liu

American Journal of Agricultural Economics, 2016, vol. 98, issue 2, 360-382

Abstract: The Agricultural Act of 2014 solidified insurance as the cornerstone of U.S. agricultural policy. The Congressional Budget Office (2014) estimates that this act will increase spending on agricultural insurance programs by $5.7 billion to a total of $89.8 billion over the next decade. In light of the sizable resources directed toward these programs, accurate rating of insurance contracts is of the utmost importance to producers, private insurance companies, and the federal government. Unlike most forms of insurance, agricultural insurance is plagued by a paucity of spatially correlated data. A novel interpretation of Bayesian Model Averaging is used to estimate a set of possibly similar densities that offers greater efficiency if the set of densities are similar while seemingly not losing any if the set of densities are dissimilar. Simulations indicate that finite sample performance—in particular small sample performance—is quite promising. The proposed approach does not require knowledge of the form or extent of any possible similarities, is relatively easy to implement, admits correlated data, and can be used with either parametric or nonparametric estimators. We use the proposed approach to estimate U.S. crop insurance premium rates for area-type programs and develop a test to evaluate its efficacy. An out-of-sample game between private insurance companies and the federal government highlights the policy implications for a variety of crop-state combinations. Consistent with the simulation results, the performance of the proposed approach with respect to rating area-type insurance—in particular small sample performance—remains quite promising.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (10) Track citations by RSS feed

Downloads: (external link) (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

American Journal of Agricultural Economics is currently edited by Madhu Khanna, Brian E. Roe, James Vercammen and JunJie Wu

More articles in American Journal of Agricultural Economics from Agricultural and Applied Economics Association Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ( this e-mail address is bad, please contact ) and Christopher F. Baum ().

Page updated 2021-05-03
Handle: RePEc:oup:ajagec:v:98:y:2016:i:2:p:360-382.