Condition-dependent foraging strategies in a coastal seabird: evidence for the rich get richer hypothesis
Brock Geary,
Scott T Walter,
Paul L Leberg and
Jordan Karubian
Behavioral Ecology, 2019, vol. 30, issue 2, 356-363
Abstract:
The degree to which foraging individuals are able to appropriately modify their behaviors in response to dynamic environmental conditions and associated resource availability can have important fitness consequences. Despite an increasingly refined understanding of differences in foraging behavior between individuals, we still lack detailed characterizations of within-individual variation over space and time, and what factors may drive this variability. From 2014 to 2017, we used GPS transmitters and accelerometers to document foraging movements by breeding adult Brown Pelicans (Pelecanus occidentalis) in the northern Gulf of Mexico, where the prey landscape is patchy and dynamic at various scales. Assessments of traditional foraging metrics such as trip distance, linearity, or duration did not yield significant relationships between individuals. However, we did observe lower site fidelity and less variation in energy expenditure in birds of higher body condition, despite a population-level trend of increased fidelity as the breeding season progressed. These findings suggest that high-quality individuals are both more variable and more efficient in their foraging behaviors during a period of high energetic demand, consistent with a “rich get richer” scenario in which individuals in better condition are able to invest in more costly behaviors that provide higher returns. This work highlights the importance of considering behavioral variation at multiple scales, with particular reference to within-individual variation, to improve our understanding of foraging ecology in wild populations. Within-individual variation in foraging behaviors is not well-understood, despite historical appreciation of between-individual differences. Spatially explicit assessment of foraging strategies in Brown Pelicans revealed no consistent between-individual differences, but considerable within-individual variation. Birds in better condition had lower site fidelity and less variable energy expenditure, suggesting more efficient foraging despite uncertainty associated with this strategy. This is consistent with a “rich get richer” scenario and highlights the importance of considering behavioral variation at multiple scales.
Keywords: behavioral flexibility; central place foraging; foraging ecology; individual variation; seabird; telemetry (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/beheco/ary173 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:beheco:v:30:y:2019:i:2:p:356-363.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Behavioral Ecology is currently edited by Louise Barrett
More articles in Behavioral Ecology from International Society for Behavioral Ecology Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().