EconPapers    
Economics at your fingertips  
 

The effects of microhabitat specialization on mating communication in a wolf spider

Malcolm F Rosenthal, Eileen A Hebets, Benji Kessler, Rowan McGinley, Damian O Elias and Rebecca C Fuller

Behavioral Ecology, 2019, vol. 30, issue 5, 1398-1405

Abstract: Animal signals experience selection for detectability, which is determined in large part by the signal transmission properties of the habitat. Understanding the ecological context in which communication takes place is therefore critical to understanding selection on the form of communication signals. In order to determine the influence of environmental heterogeneity on signal transmission, we focus on a wolf spider species native to central Florida, Schizocosa floridana, in which males court females using a substrate-borne vibratory song. We test the hypothesis that S. floridana is a substrate specialist by 1) assessing substrate use by females and males in the field, 2) quantifying substrate-specific vibratory signal transmission in the laboratory, and 3) determining substrate-specific mating success in the laboratory. We predict a priori that 1) S. floridana restricts its signaling to oak litter, 2) oak litter best transmits their vibratory signal, and 3) S. floridana mates most readily on oak litter. We find that S. floridana is almost exclusively found on oak litter, which was found to attenuate vibratory courtship signals the least. Spiders mated with equal frequency on oak and pine, but did not mate at all on sand. Additionally, we describe how S. floridana song contains a novel component, chirps, which attenuate more strongly than its other display components on pine and sand, but not on oak, suggesting that the ways in which the environment relaxes restrictions on signal form may be as important as the ways in which it imposes them. We examined the relationship between habitat use and song structure in the wolf spider Schizocosa floridana. We found the spiders restricted their habitat use to oak litter, which transmitted their songs best, even though their environment contained many substrate types. We also found that the pure tone “chirp” unique to this spider’s song was more strongly degraded by nonoak substrates than other song components, suggesting that substrate specialization may have been key to its evolution.

Keywords: sensory drive; vibratory communication; wolf spider (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/beheco/arz091 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:beheco:v:30:y:2019:i:5:p:1398-1405.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Behavioral Ecology is currently edited by Louise Barrett

More articles in Behavioral Ecology from International Society for Behavioral Ecology Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:beheco:v:30:y:2019:i:5:p:1398-1405.