EconPapers    
Economics at your fingertips  
 

Risk assessment and the use of novel shortcuts in spatial detouring tasks in jumping spiders

Samuel Aguilar-Argüello, Daniel Gerhard, Ximena J Nelson and Marie Herberstein

Behavioral Ecology, 2019, vol. 30, issue 5, 1488-1498

Abstract: Selection on individuals that incorporate risk to quickly and accurately make a priori navigational assessments may lead to increased spatial ability. Jumping spiders (Araneae: Salticidae) are characterized by their highly acute vision, which mediates many behaviors, including prey capture and navigation. When moving to a specific goal (prey, nest, a potential mate, etc.), salticids rely on visual cues and spatial memory to orient in 3-dimensional space. Salticid spatial ability has been studied in homing and detour tasks, with Portia being considered one of the most skillful genera in terms of spatial ability in the family. Commonly living in complex environments, salticids are likely to encounter a wide variety of routes that could lead to a goal, and, as selection favors individuals that can accurately make assessments, they may be able to assess alternative route distances to select the most efficient route. Here, we tested whether 2 salticid species (Portia fimbriata and Trite planiceps) can discriminate and assess between different available routes by their length, and riskiness to escape from a stressful scenario. Results suggest that while Portia is more likely to choose the easiest and shortest escape routes, Trite is faster in both decision making about which route to take, and to escape. However, some individuals were able to use novel shortcuts instead of the routes expected, with Portia containing a higher proportion of shortcut-takers than Trite. These differences in spatial ability seem to correspond with the environmental complexity inhabited by each species. Jumping spiders use acute vision to solve complex 3-dimensional tasks, including the use of detours to reach a specific goal. We show that they can assess differences between routes enabling escape from a stressful situation, discriminating routes by length and by riskiness. Differential spatial abilities between closely related species, possibly through selection based on the characteristics of the environment in which each species lives, may explain our results.

Keywords: cognition; decision making; detour behavior; environmental complexity; route choice; salticid (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/beheco/arz105 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:beheco:v:30:y:2019:i:5:p:1488-1498.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Behavioral Ecology is currently edited by Louise Barrett

More articles in Behavioral Ecology from International Society for Behavioral Ecology Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:beheco:v:30:y:2019:i:5:p:1488-1498.