EconPapers    
Economics at your fingertips  
 

The interaction between ambush predators, search patterns of herbivores, and aggregations of plants

Inon Scharf

Behavioral Ecology, 2021, vol. 32, issue 6, 1246-1255

Abstract: While predators benefit from spatial overlap with their prey, prey strive to avoid predators. I used an individual-based simulation comprising sit-and-wait predators, widely foraging herbivores, and plants, to examine the link between predator ambush location, herbivore movement, and plant aggregation. I used a genetic algorithm to reach the best strategies for all players. The predators could ambush herbivores either inside or outside plant patches. The herbivores could use movement of varying directionality levels, with a change in directionality following the detection of plants. When the predators were fixed outside plant patches, the herbivores were selected to use a directional movement before plant encounter followed by a tortuous movement afterwards. When predators were fixed inside patches, herbivores used a continuous directional movement. Predators maintained within-patch positions when the herbivores were fixed to use the directional-tortuous movement. The predator location inside patches led to higher plant aggregations, by changing the herbivore movement. Finally, I allowed half of the predators to search for herbivores and let them compete with sit-and-wait predators located inside plant patches. When plants were clumped and herbivores used a directional-tortuous movement, with a movement shift after plant detection, ambush predators had the highest success relative to widely foraging predators. In all other scenarios, widely foraging predators did much better than ambush predators. The findings from my simulation suggest a behavioral mechanism for several observed phenomena of predator–prey interactions, such as a shorter stay by herbivores in patches when predators ambush them nearby, and a more directional movement of herbivores in riskier habitats.

Keywords: area-restricted search; foraging mode; habitat selection; individual-based model; movement; optimal foraging; predator–prey behavioral game (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/beheco/arab091 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:beheco:v:32:y:2021:i:6:p:1246-1255.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Behavioral Ecology is currently edited by Louise Barrett

More articles in Behavioral Ecology from International Society for Behavioral Ecology Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:beheco:v:32:y:2021:i:6:p:1246-1255.