Covariate-adjusted precision matrix estimation with an application in genetical genomics
T. Tony Cai,
Hongzhe Li,
Weidong Liu and
Jichun Xie
Biometrika, 2013, vol. 100, issue 1, 139-156
Abstract:
Motivated by analysis of genetical genomics data, we introduce a sparse high-dimensional multivariate regression model for studying conditional independence relationships among a set of genes adjusting for possible genetic effects. The precision matrix in the model specifies a covariate-adjusted Gaussian graph, which presents the conditional dependence structure of gene expression after the confounding genetic effects on gene expression are taken into account. We present a covariate-adjusted precision matrix estimation method using a constrained ℓ 1 minimization, which can be easily implemented by linear programming. Asymptotic convergence rates in various matrix norms and sign consistency are established for the estimators of the regression coefficients and the precision matrix, allowing both the number of genes and the number of the genetic variants to diverge. Simulation shows that the proposed method results in significant improvements in both precision matrix estimation and graphical structure selection when compared to the standard Gaussian graphical model assuming constant means. The proposed method is applied to yeast genetical genomics data for the identification of the gene network among a set of genes in the mitogen-activated protein kinase pathway. Copyright 2013, Oxford University Press.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass058 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:100:y:2013:i:1:p:139-156
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().