Automatic declustering of rare events
C. Y. Robert
Biometrika, 2013, vol. 100, issue 3, 587-606
Abstract:
The analysis of events with low probability but disastrous impact entails understanding how they cluster in time. We present an automatic three-step procedure for identifying clusters, estimating the cluster size distribution and constructing confidence intervals for the extremal index, which measures the degree of clustering of rare events. The third step combines empirical likelihood and parametric likelihood approaches. Simulations show that our new procedure performs very well for finite samples and outperforms previous methods in constructing confidence intervals for the extremal index when there is clustering in the data, as well as in estimating probabilities for small clusters. Copyright 2013, Oxford University Press.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast013 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:100:y:2013:i:3:p:587-606
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().