Adaptive Bayesian multivariate density estimation with Dirichlet mixtures
Weining Shen,
Surya T. Tokdar and
Subhashis Ghosal
Biometrika, 2013, vol. 100, issue 3, 623-640
Abstract:
We show that rate-adaptive multivariate density estimation can be performed using Bayesian methods based on Dirichlet mixtures of normal kernels with a prior distribution on the kernel's covariance matrix parameter. We derive sufficient conditions on the prior specification that guarantee convergence to a true density at a rate that is minimax optimal for the smoothness class to which the true density belongs. No prior knowledge of smoothness is assumed. The sufficient conditions are shown to hold for the Dirichlet location mixture-of-normals prior with a Gaussian base measure and an inverse Wishart prior on the covariance matrix parameter. Locally Hölder smoothness classes and their anisotropic extensions are considered. Our study involves several technical novelties, including sharp approximation of finitely differentiable multivariate densities by normal mixtures and a new sieve on the space of such densities. Copyright 2013, Oxford University Press.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast015 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:100:y:2013:i:3:p:623-640
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().