EconPapers    
Economics at your fingertips  
 

More efficient estimators for case-cohort studies

S. Kim, J. Cai and W. Lu

Biometrika, 2013, vol. 100, issue 3, 695-708

Abstract: The case-cohort study design, used to reduce costs in large cohort studies, involves a random sample of the entire cohort, called the subcohort, augmented with subjects having the disease of interest but not in the subcohort sample. When several diseases are of interest, multiple case-cohort studies may be conducted using the same subcohort, with each disease analysed separately, ignoring the additional exposure measurements collected on subjects with the other diseases. This is not an efficient use of the data, and in this paper we propose more efficient estimators. We consider both joint and separate analyses for the multiple diseases. We propose an estimating equation approach with a new weight function, and we establish the consistency and asymptotic normality of the resulting estimator. Simulation studies show that the proposed methods using all available information lead to gains in efficiency. We apply our proposed method to data from the Busselton Health Study. Copyright 2013, Oxford University Press.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast018 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:100:y:2013:i:3:p:695-708

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:100:y:2013:i:3:p:695-708