EconPapers    
Economics at your fingertips  
 

Practical perfect sampling using composite bounding chains: the Dirichlet-multinomial model

Nathan M. Stein and Xiao-Li Meng

Biometrika, 2013, vol. 100, issue 4, 817-830

Abstract: A discrete data augmentation scheme together with two different parameterizations yields two Gibbs samplers for sampling from the posterior distribution of the hyperparameters of the Dirichlet-multinomial hierarchical model under a default prior distribution. The finite-state space nature of this data augmentation permits us to construct two perfect samplers using bounding chains that take advantage of monotonicity and anti-monotonicity in the target posterior distribution, but both are impractically slow. We demonstrate that a composite algorithm that strategically alternates between the two samplers' updates can be substantially faster than either individually. The speed gains come because the composite algorithm takes a divide-and-conquer approach in which one update quickly shrinks the bounding set for the augmented data, and the other update immediately coalesces on the parameter, once the augmented-data bounding set is a singleton. We theoretically bound the expected time until coalescence for the composite algorithm, and show via simulation that the theoretical bounds can be close to actual performance. Copyright 2013, Oxford University Press.

Date: 2013
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast024 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:100:y:2013:i:4:p:817-830

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:100:y:2013:i:4:p:817-830