Designs for crossvalidating approximation models
Qiong Zhang and
Peter Z. G. Qian
Biometrika, 2013, vol. 100, issue 4, 997-1004
Abstract:
Multifold crossvalidation is routinely used for assessing the prediction error of an approximation model for a black-box function. Despite its popularity, this method is known to have high variability. To mitigate this drawback, we propose an experimental design approach that borrows Latin hypercube designs to construct a structured crossvalidation sample such that the input values in each fold achieve uniformity. Theoretical results show that the estimate of the prediction error of the proposed method has significantly smaller variability than its counterpart under independent and identically distributed sampling. Numerical examples corroborate the theoretical results. Copyright 2013, Oxford University Press.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast034 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:100:y:2013:i:4:p:997-1004
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().