EconPapers    
Economics at your fingertips  
 

Nonparametric estimation of a periodic sequence in the presence of a smooth trend

Michael Vogt and Oliver Linton

Biometrika, 2014, vol. 101, issue 1, 121-140

Abstract: We investigate a nonparametric regression model including a periodic component, a smooth trend function, and a stochastic error term. We propose a procedure to estimate the unknown period and the function values of the periodic component as well as the nonparametric trend function. The theoretical part of the paper establishes the asymptotic properties of our estimators. In particular, we show that our estimator of the period is consistent. In addition, we derive the convergence rates and the limiting distributions of our estimators of the periodic component and the trend function. The asymptotic results are complemented with a simulation study and an application to global temperature anomaly data.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast051 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
Working Paper: Nonparametric estimation of a periodic sequence in the presence of a smooth trend (2012) Downloads
Working Paper: Nonparametric estimation of a periodic sequence in the presence of a smooth trend (2012) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:1:p:121-140.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-22
Handle: RePEc:oup:biomet:v:101:y:2014:i:1:p:121-140.