EconPapers    
Economics at your fingertips  
 

A sum characterization of hidden regular variation with likelihood inference via expectation-maximization

Grant B. Weller and Daniel Cooley

Biometrika, 2014, vol. 101, issue 1, 17-36

Abstract: A fundamental deficiency of classical multivariate extreme value theory is the inability to distinguish between asymptotic independence and exact independence. In this work, we examine multivariate threshold modelling in the framework of regular variation on cones. Tail dependence is described by a limiting measure, which in some cases is degenerate on joint tail regions despite strong subasymptotic dependence in such regions. Hidden regular variation, a higher-order tail decay on these regions, offers a refinement of the classical theory. We develop a representation of random vectors possessing hidden regular variation as the sum of independent regular varying components. The representation is shown to be asymptotically valid via a multivariate tail equivalence result. We develop a likelihood-based estimation procedure from this representation via a Monte Carlo expectation-maximization algorithm which has been modified for tail estimation. The method is demonstrated on simulated data and applied to air pollution measurements.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast046 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:1:p:17-36.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:101:y:2014:i:1:p:17-36.