Protective estimation of mixed-effects logistic regression when data are not missing at random
A. Skrondal and
Sophia Rabe-Hesketh
Biometrika, 2014, vol. 101, issue 1, 175-188
Abstract:
We consider estimation of mixed-effects logistic regression models for longitudinal data when missing outcomes are not missing at random. A typology of missingness mechanisms is presented that includes missingness dependent on observed or missing current outcomes, observed or missing lagged outcomes and subject-specific effects. When data are not missing at random, consistent estimation by maximum marginal likelihood generally requires correct parametric modelling of the missingness mechanism, which hinges on unverifiable assumptions. We show that standard maximum conditional likelihood estimators are protective in the sense that they are consistent for monotone or intermittent missing data under a wide range of missingness mechanisms. Our approach requires neither specification of parametric models for the missingness mechanism nor refreshment samples and is straightforward to implement in standard software.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast054 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:1:p:175-188.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().