EconPapers    
Economics at your fingertips  
 

Graph estimation with joint additive models

Arend Voorman, Ali Shojaie and Daniela Witten

Biometrika, 2014, vol. 101, issue 1, 85-101

Abstract: In recent years, there has been considerable interest in estimating conditional independence graphs in high dimensions. Most previous work assumed that the variables are multivariate Gaussian or that the conditional means of the variables are linearly related. Unfortunately, if these assumptions are violated, the resulting conditional independence estimates can be inaccurate. We propose a semiparametric method, graph estimation with joint additive models, which allows the conditional means of the features to take an arbitrary additive form. We present an efficient algorithm for computation of our estimator, and prove that it is consistent. We extend our method to estimation of directed graphs with known causal ordering. Using simulated data, we show that our method performs better than existing methods when there are nonlinear relationships among the features, and is comparable to methods that assume multivariate normality when the conditional means are linear. We illustrate our method on a cell signalling dataset.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast053 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:1:p:85-101.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:101:y:2014:i:1:p:85-101.