EconPapers    
Economics at your fingertips  
 

Variance estimation in high-dimensional linear models

Lee H. Dicker

Biometrika, 2014, vol. 101, issue 2, 269-284

Abstract: The residual variance and the proportion of explained variation are important quantities in many statistical models and model fitting procedures. They play an important role in regression diagnostics and model selection procedures, as well as in determining the performance limits in many problems. In this paper we propose new method-of-moments-based estimators for the residual variance, the proportion of explained variation and other related quantities, such as the ℓ2 signal strength. The proposed estimators are consistent and asymptotically normal in high-dimensional linear models with Gaussian predictors and errors, where the number of predictors d is proportional to the number of observations n; in fact, consistency holds even in settings where d/n → ∞. Existing results on residual variance estimation in high-dimensional linear models depend on sparsity in the underlying signal. Our results require no sparsity assumptions and imply that the residual variance and the proportion of explained variation can be consistently estimated even when d>n and the underlying signal itself is nonestimable. Numerical work suggests that some of our distributional assumptions may be relaxed. A real-data analysis involving gene expression data and single nucleotide polymorphism data illustrates the performance of the proposed methods.

Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast065 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:2:p:269-284.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:269-284.