EconPapers    
Economics at your fingertips  
 

A combined estimating function approach for fitting stationary point process models

C. Deng, R. P. Waagepetersen and Y. Guan

Biometrika, 2014, vol. 101, issue 2, 393-408

Abstract: A composite likelihood technique based on pairwise contributions provides a computationally simple but potentially inefficient approach for fitting spatial point process models. We propose a new estimation procedure that improves the efficiency. Our approach combines estimating functions derived from pairwise composite likelihood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate the efficacy of our proposed method through a simulation study and an application to the longleaf pine data.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast069 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:2:p:393-408.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:393-408.