Distances and inference for covariance operators
Davide Pigoli,
John A. D. Aston,
Ian L. Dryden and
Piercesare Secchi
Biometrika, 2014, vol. 101, issue 2, 409-422
Abstract:
A framework is developed for inference concerning the covariance operator of a functional random process, where the covariance operator itself is an object of interest for statistical analysis. Distances for comparing positive-definite covariance matrices are either extended or shown to be inapplicable to functional data. In particular, an infinite-dimensional analogue of the Procrustes size-and-shape distance is developed. Convergence of finite-dimensional approximations to the infinite-dimensional distance metrics is also shown. For inference, a Fréchet estimator of both the covariance operator itself and the average covariance operator is introduced. A permutation procedure to test the equality of the covariance operators between two groups is also considered. Additionally, the use of such distances for extrapolation to make predictions is explored. As an example of the proposed methodology, the use of covariance operators has been suggested in a philological study of cross-linguistic dependence as a way to incorporate quantitative phonetic information. It is shown that distances between languages derived from phonetic covariance functions can provide insight into the relationships between the Romance languages.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu008 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:2:p:409-422.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().