EconPapers    
Economics at your fingertips  
 

Measurement bias and effect restoration in causal inference

Manabu Kuroki and Judea Pearl

Biometrika, 2014, vol. 101, issue 2, 423-437

Abstract: This paper highlights several areas where graphical techniques can be harnessed to address the problem of measurement errors in causal inference. In particular, it discusses the control of unmeasured confounders in parametric and nonparametric models and the computational problem of obtaining bias-free effect estimates in such models. We derive new conditions under which causal effects can be restored by observing proxy variables of unmeasured confounders with/without external studies.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ast066 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:2:p:423-437.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:101:y:2014:i:2:p:423-437.