Nonparametric inference on bivariate survival data with interval sampling: association estimation and testing
Hong Zhu and
Mei-Cheng Wang
Biometrika, 2014, vol. 101, issue 3, 519-533
Abstract:
In many biomedical applications, interest focuses on the occurrence of two or more consecutive failure events and the relationship between event times, such as age of disease onset and residual lifetime. Bivariate survival data with interval sampling arise frequently when disease registries or surveillance systems collect data based on disease incidence occurring within a specific calendar time interval. The initial event is then retrospectively confirmed and the subsequent failure event may be observed during follow-up. In life history studies, the initial and two consecutive failure events could correspond to birth, disease onset and death. The statistical features and bias of observed data in relation to interval sampling were discussed by Zhu & Wang (2012). Here we propose nonparametric estimation of the association between bivariate failure times based on Kendall’s tau for data collected with interval sampling. A nonparametric estimator is given, where the contribution of each comparable and orderable pair is weighted by the inverse of the associated selection probability. Analysis methods for bivariate survival data with interval sampling rely on the assumption of quasi-independence, i.e., that bivariate failure times and the time of the initial event are independent in the observable region. This paper develops a nonparametric test of quasi-independence based on a bivariate conditional Kendall’s tau for such data. Simulation studies demonstrate that the association estimator and testing procedure perform well with moderate sample sizes. Illustrations with two real datasets are provided.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu005 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:3:p:519-533.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().