Multicategory angle-based large-margin classification
Chong Zhang and
Yufeng Liu
Biometrika, 2014, vol. 101, issue 3, 625-640
Abstract:
Large-margin classifiers are popular methods for classification. Among existing simultaneous multicategory large-margin classifiers, a common approach is to learn k different functions for a k-class problem with a sum-to-zero constraint. Such a formulation can be inefficient. We propose a new multicategory angle-based large-margin classification framework. The proposed angle-based classifiers consider a simplex-based prediction rule without the sum-to-zero constraint, and enjoy more efficient computation. Many binary large-margin classifiers can be naturally generalized for multicategory problems through the angle-based framework. Theoretical and numerical studies demonstrate the usefulness of the angle-based methods.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu017 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:3:p:625-640.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().