Posterior expectation based on empirical likelihoods
A. Vexler,
G. Tao and
A. D. Hutson
Biometrika, 2014, vol. 101, issue 3, 711-718
Abstract:
Posterior expectation is widely used as a Bayesian point estimator. In this note we extend it from parametric models to nonparametric models using empirical likelihood, and develop a nonparametric analogue of James–Stein estimation. We use the Laplace method to establish asymptotic approximations to our proposed posterior expectations, and show by simulation that they are often more efficient than the corresponding classical nonparametric procedures, especially when the underlying data are skewed.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu018 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:3:p:711-718.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().