EconPapers    
Economics at your fingertips  
 

Inference on multiple correlation coefficients with moderately high dimensional data

Shurong Zheng, Dandan Jiang, Zhidong Bai and Xuming He

Biometrika, 2014, vol. 101, issue 3, 748-754

Abstract: When the multiple correlation coefficient is used to measure how strongly a given variable can be linearly associated with a set of covariates, it suffers from an upward bias that cannot be ignored in the presence of a moderately high dimensional covariate. Under an independent component model, we derive an asymptotic approximation to the distribution of the squared multiple correlation coefficient that depends on a simple correction factor. We show that this approximation enables us to construct reliable confidence intervals on the population coefficient even when the ratio of the dimension to the sample size is close to unity and the variables are non-Gaussian.

Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu023 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:3:p:748-754.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:101:y:2014:i:3:p:748-754.