Analytical p-value calculation for the higher criticism test in finite-d problems
Ian J. Barnett and
Xihong Lin
Biometrika, 2014, vol. 101, issue 4, 964-970
Abstract:
The higher criticism test is effective for testing a joint null hypothesis against a sparse alternative, e.g., for testing the effect of a gene or genetic pathway that consists of d genetic markers. Accurate p-value calculations for the higher criticism test based on the asymptotic distribution require a very large d, which is not the case for the number of genetic variants in a gene or a pathway. In this paper we propose an analytical method for accurately computing the p-value of the higher criticism test for finite-d problems. Unlike previous treatments, this method does not rely on asymptotics in d or on simulation, and is exact for arbitrary d when the test statistics are normally distributed. The method is particularly computationally advantageous when d is not large. We illustrate the proposed method with a case-control genome-wide association study of lung cancer and compare its power with competing methods through simulations.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu033 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:4:p:964-970.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().