Generalized Cornfield conditions for the risk difference
Peng Ding and
Tyler J. Vanderweele
Biometrika, 2014, vol. 101, issue 4, 971-977
Abstract:
A central question in causal inference with observational studies is the sensitivity of conclusions to unmeasured confounding. The classical Cornfield condition allows us to assess whether an unmeasured binary confounder can explain away the observed relative risk of the exposure on the outcome. It states that for an unmeasured confounder to explain away an observed relative risk, the association between the unmeasured confounder and the exposure and the association between the unmeasured confounder and the outcome must both be larger than the observed relative risk. In this paper, we extend the classical Cornfield condition in three directions. First, we consider analogous conditions for the risk difference and allow for a categorical, not just a binary, unmeasured confounder. Second, we provide more stringent thresholds that the maximum of the above-mentioned associations must satisfy, rather than weaker conditions that both must satisfy. Third, we show that all the earlier results on Cornfield conditions hold under weaker assumptions than previously used. We illustrate the potential applications by real examples, where our new conditions give more information than the classical ones.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu030 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:4:p:971-977.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().