EconPapers    
Economics at your fingertips  
 

Robust Bayesian variable selection in linear models with spherically symmetric errors

Yuzo Maruyama and William E. Strawderman

Biometrika, 2014, vol. 101, issue 4, 992-998

Abstract: This paper studies Bayesian variable selection in linear models with general spherically symmetric error distributions. We construct the posterior odds based on a separable prior, which arises as a class of mixtures of Gaussian densities. The posterior odds for comparing among nonnull models are shown to be independent of the error distribution, if this is spherically symmetric. Because of this invariance, we refer to our method as a robust Bayesian variable selection method. We demonstrate that our posterior odds have model selection consistency, and that our class of prior functions are the only ones within a large class which are robust in our sense.

Date: 2014
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu039 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:101:y:2014:i:4:p:992-998.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:101:y:2014:i:4:p:992-998.