EconPapers    
Economics at your fingertips  
 

Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator

A. Doucet, M. K. Pitt, G. Deligiannidis and Robert Kohn ()

Biometrika, 2015, vol. 102, issue 2, 295-313

Abstract: When an unbiased estimator of the likelihood is used within a Metropolis–Hastings chain, it is necessary to trade off the number of Monte Carlo samples used to construct this estimator against the asymptotic variances of the averages computed under this chain. Using many Monte Carlo samples will typically result in Metropolis–Hastings averages with lower asymptotic variances than the corresponding averages that use fewer samples; however, the computing time required to construct the likelihood estimator increases with the number of samples. Under the assumption that the distribution of the additive noise introduced by the loglikelihood estimator is Gaussian with variance inversely proportional to the number of samples and independent of the parameter value at which it is evaluated, we provide guidelines on the number of samples to select. We illustrate our results by considering a stochastic volatility model applied to stock index returns.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (41)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu075 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:2:p:295-313.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:102:y:2015:i:2:p:295-313.