EconPapers    
Economics at your fingertips  
 

On the dependence structure of bivariate recurrent event processes: inference and estimation

Jing Ning, Yong Chen, Chunyan Cai, Xuelin Huang and Mei-Cheng Wang

Biometrika, 2015, vol. 102, issue 2, 345-358

Abstract: Bivariate or multivariate recurrent event processes are often encountered in longitudinal studies in which more than one type of event is of interest. There has been much research on regression analysis for such data, but little has been done to measure the dependence between recurrent event processes. We propose a time-dependent measure, termed the rate ratio, to assess the local dependence between two types of recurrent event processes. We model the rate ratio as a parametric function of time, and leave unspecified all other aspects of the distribution. We develop a composite likelihood procedure for model fitting and parameter estimation. We show that the proposed estimator is consistent and asymptotically normal. Its finite sample performance is evaluated by simulation and illustrated by an application to a soft tissue sarcoma study.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu073 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:2:p:345-358.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:102:y:2015:i:2:p:345-358.