Automatic structure recovery for additive models
Yichao Wu and
Leonard A. Stefanski
Biometrika, 2015, vol. 102, issue 2, 381-395
Abstract:
We propose an automatic structure recovery method for additive models, based on a backfitting algorithm coupled with local polynomial smoothing, in conjunction with a new kernel-based variable selection strategy. Our method produces estimates of the set of noise predictors, the sets of predictors that contribute polynomially at different degrees up to a specified degree M, and the set of predictors that contribute beyond polynomially of degree M. We prove consistency of the proposed method, and describe an extension to partially linear models. Finite-sample performance of the method is illustrated via Monte Carlo studies and a real-data example.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asu070 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:2:p:381-395.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().