Tree-based methods for individualized treatment regimes
E. B. Laber and
Y. Q. Zhao
Biometrika, 2015, vol. 102, issue 3, 501-514
Abstract:
Individualized treatment rules recommend treatments on the basis of individual patient characteristics. A high-quality treatment rule can produce better patient outcomes, lower costs and less treatment burden. If a treatment rule learned from data is to be used to inform clinical practice or provide scientific insight, it is crucial that it be interpretable; clinicians may be unwilling to implement models they do not understand, and black-box models may not be useful for guiding future research. The canonical example of an interpretable prediction model is a decision tree. We propose a method for estimating an optimal individualized treatment rule within the class of rules that are representable as decision trees. The class of rules we consider is interpretable but expressive. A novel feature of this problem is that the learning task is unsupervised, as the optimal treatment for each patient is unknown and must be estimated. The proposed method applies to both categorical and continuous treatments and produces favourable marginal mean outcomes in simulation experiments. We illustrate it using data from a study of major depressive disorder.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv028 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:3:p:501-514.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().