EconPapers    
Economics at your fingertips  
 

Diagnostic studies in sufficient dimension reduction

Xin Chen, R. Dennis Cook and Changliang Zou

Biometrika, 2015, vol. 102, issue 3, 545-558

Abstract: Sufficient dimension reduction in regression aims to reduce the predictor dimension by replacing the original predictors with some set of linear combinations of them without loss of information. Numerous dimension reduction methods have been developed based on this paradigm. However, little effort has been devoted to diagnostic studies within the context of dimension reduction. In this paper we introduce methods to check goodness-of-fit for a given dimension reduction subspace. The key idea is to extend the so-called distance correlation to measure the conditional dependence relationship between the covariates and the response given a reduction subspace. Our methods require minimal assumptions, which are usually much less restrictive than the conditions needed to justify the original methods. Asymptotic properties of the test statistic are studied. Numerical examples demonstrate the effectiveness of the proposed approach.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv016 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:3:p:545-558.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:102:y:2015:i:3:p:545-558.