EconPapers    
Economics at your fingertips  
 

Outlier detection for high-dimensional data

Kwangil Ro, Changliang Zou, Zhaojun Wang and Guosheng Yin

Biometrika, 2015, vol. 102, issue 3, 589-599

Abstract: Outlier detection is an integral component of statistical modelling and estimation. For high-dimensional data, classical methods based on the Mahalanobis distance are usually not applicable. We propose an outlier detection procedure that replaces the classical minimum covariance determinant estimator with a high-breakdown minimum diagonal product estimator. The cut-off value is obtained from the asymptotic distribution of the distance, which enables us to control the Type I error and deliver robust outlier detection. Simulation studies show that the proposed method behaves well for high-dimensional data.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv021 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:3:p:589-599.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:102:y:2015:i:3:p:589-599.