Bayesian sensitivity analysis with the Fisher–Rao metric
Sebastian Kurtek and
Karthik Bharath
Biometrika, 2015, vol. 102, issue 3, 601-616
Abstract:
We propose a geometric framework to assess sensitivity of Bayesian procedures to modelling assumptions based on the nonparametric Fisher–Rao metric. While the framework is general, the focus of this article is on assessing local and global robustness in Bayesian procedures with respect to perturbations of the likelihood and prior, and on the identification of influential observations. The approach is based on a square-root representation of densities, which enables analytical computation of geodesic paths and distances, facilitating the definition of naturally calibrated local and global discrepancy measures. An important feature of our approach is the definition of a geometric $\epsilon$-contamination class of sampling distributions and priors via intrinsic analysis on the space of probability density functions. We demonstrate the applicability of our framework to generalized mixed-effects models and to directional and shape data.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv026 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:3:p:601-616.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().