Benchmarked empirical Bayes methods in multiplicative area-level models with risk evaluation
M. Ghosh,
T. Kubokawa and
Y. Kawakubo
Biometrika, 2015, vol. 102, issue 3, 647-659
Abstract:
The paper develops hierarchical empirical Bayes and benchmarked hierarchical empirical Bayes estimators of positive small area means under multiplicative models. The usual benchmarking requirement is that the small area estimates, when aggregated, should equal the direct estimates for the larger geographical areas. However, while estimating positive small area parameters, the conventional squared error or weighted squared error loss subject to the usual benchmark constraint may not produce positive estimators, so it is necessary to seek other loss functions. We consider a multiplicative model for the original data for estimating positive small area means, and suggest a variant of the Kullback–Leibler divergence as a loss function. The prediction errors of the suggested hierarchical empirical Bayes estimators are investigated asymptotically, and their second-order unbiased estimators are provided. Bootstrapped estimators of these prediction errors for both hierarchical empirical Bayes and benchmarked hierarchical empirical Bayes estimators are also given. The performance of the suggested procedures is investigated through simulation as well as with an example.
Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv010 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:3:p:647-659.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().