EconPapers    
Economics at your fingertips  
 

Order selection in finite mixture models: complete or observed likelihood information criteria?

Francis K.C. Hui, David I. Warton and Scott D. Foster

Biometrika, 2015, vol. 102, issue 3, 724-730

Abstract: Choosing the number of components in a finite mixture model is a challenging task. In this article, we study the behaviour of information criteria for selecting the mixture order, based on either the observed likelihood or the complete likelihood including component labels. We propose a new observed likelihood criterion called aicmix, which is shown to be order consistent. We further show that when there is a nontrivial level of classification uncertainty in the true model, complete likelihood criteria asymptotically underestimate the true number of components. A simulation study illustrates the potentially poor finite-sample performance of complete likelihood criteria, while aicmix and the Bayesian information criterion perform strongly regardless of the level of classification uncertainty.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv027 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:3:p:724-730.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:102:y:2015:i:3:p:724-730.