Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion
A. Beskos,
J. Dureau and
K. Kalogeropoulos
Biometrika, 2015, vol. 102, issue 4, 809-827
Abstract:
We consider continuous-time diffusion models driven by fractional Brownian motion. Observations are assumed to possess a nontrivial likelihood given the latent path. Due to the non-Markovian and high-dimensional nature of the latent path, estimating posterior expectations is computationally challenging. We present a reparameterization framework based on the Davies and Harte method for sampling stationary Gaussian processes and use it to construct a Markov chain Monte Carlo algorithm that allows computationally efficient Bayesian inference. The algorithm is based on a version of hybrid Monte Carlo simulation that delivers increased efficiency when used on the high-dimensional latent variables arising in this context. We specify the methodology on a stochastic volatility model, allowing for memory in the volatility increments through a fractional specification. The method is demonstrated on simulated data and on the S&P 500/VIX time series. In the latter case, the posterior distribution favours values of the Hurst parameter smaller than $1/2$, pointing towards medium-range dependence.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv051 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:4:p:809-827.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().