EconPapers    
Economics at your fingertips  
 

Nonparametric methods for group testing data, taking dilution into account

A. Delaigle and P. Hall

Biometrika, 2015, vol. 102, issue 4, 871-887

Abstract: Group testing methods are used widely to assess the presence of a contaminant, based on measurements of the concentration of a biomarker, for example to test the presence of a disease in pooled blood samples. The test would be perfect if it produced a positive result whenever the contaminant was present, and a negative result otherwise. However, in practice the test is always at least somewhat imperfect, for example because it is sensitive to the proportion of contaminated items in the group, rather than to the sheer existence of one or more contaminated items. We develop a nonparametric method for accommodating this dilution effect. Our approach allows us to estimate, under minimal assumptions, the probability $m(x)$ that an item is contaminated, conditional on the value $x$ of an explanatory variable, and to estimate the probability, $q$, that an individual chosen at random is disease free, and the specificity Sp, and the sensitivity Se, of the test. These are all ill-posed problems, where poor convergence rates are usually encountered, but despite this, our estimators of $q$, Sp and Se are root-$N$ consistent, where $N$ denotes the total number of individuals in all the groups, and our estimator of $m(x)$ converges at the rate it would enjoy if $q$, Sp and Se were known.

Date: 2015
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv049 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:4:p:871-887.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:871-887.