Clarifying missing at random and related definitions, and implications when coupled with exchangeability
Fabrizia Mealli and
Donald B. Rubin
Biometrika, 2015, vol. 102, issue 4, 995-1000
Abstract:
We clarify the key concept of missingness at random in incomplete data analysis. We first distinguish between data being missing at random and the missingness mechanism being a missing-at-random one, which we call missing always at random and which is more restrictive. We further discuss how, in general, neither of these conditions is a statement about conditional independence. We then consider the implication of the more restrictive missing-always-at-random assumption when coupled with full unit-exchangeability for the matrix of the variables of interest and the missingness indicators: the conditional distribution of the missingness indicators for any variable that can have a missing value can depend only on variables that are always fully observed. We discuss implications of this for modelling missingness mechanisms.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv035 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:102:y:2015:i:4:p:995-1000.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().