EconPapers    
Economics at your fingertips  
 

Empirical Bayes deconvolution estimates

Bradley Efron

Biometrika, 2016, vol. 103, issue 1, 1-20

Abstract: An unknown prior density $g(\theta )$ has yielded realizations $\Theta _1,\ldots ,\Theta _N$. They are unobservable, but each $\Theta _i$ produces an observable value $X_i$ according to a known probability mechanism, such as $X_i\sim {\rm Po}(\Theta _i)$. We wish to estimate $g(\theta )$ from the observed sample $X_1,\ldots ,X_N$. Traditional asymptotic calculations are discouraging, indicating very slow nonparametric rates of convergence. In this article we show that parametric exponential family modelling of $g(\theta )$ can give useful estimates in moderate-sized samples. We illustrate the approach with a variety of real and artificial examples. Covariate information can be incorporated into the deconvolution process, leading to a more detailed theory of generalized linear mixed models.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (22)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv068 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:1:p:1-20.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:1-20.